ON THE RELATION OF MOISTURE IN AIR TO IIEALTH AND COMFORT.

By Robt. Briggs, C. E., Cor. Mem. Am. Inst. of Architects, etc.

In continuation of the paper read before the Amcrican Institute of Architects, ${ }^{\text {i }}$ which has appeared in the three previous numbers of this Journal, it is desirable to support the argument for the impracticability of attaining the full summer condition of humidity, for air in winter which has been warmed to the temperature of comfort, by more extended computations than could be presented to an audience, or brought within the scope of comprehension of the listener or the casual reader. The single example with specified relations, which was taken, showed, on calculation, that nearly as much heat would be expended in supplying vapor for the usual hydration of air of usual humidity and of $3 t^{\circ}$ temperature (which air was heated to 70°), as was expended in heating the air itself.

The temperatures, and humid condition of about 69 per cent. assumed, being the averages of nature, out of doors, for three warm or three cold months, in the city of Philadelphia, in 1844, as reported by Prof. Bache. It occurs, accidentally, that the exact conditions of temperature and humidity chosen for an example, give the ratio of heat demanded for the two purposes incident to warming air as unity, while this ratio, for other temperatures and degrees of humidity, will be found to vary materially. For the purpose of exhibiting more completely the gencral case, the accompanying table has bcen prepared to show what quantitics of heat are demanded for heating, or are given out in cooling air of 70 per. cent. humidity, from various temperatures (from 0° to 100°) to 70°, in direct comparison to the quantities for vaporization or condensation of water to procure the condition of 70 per cent. lumidity to the air of 70°. When 70° and 70 per cent. humidity may be accepted as the American summer condition of comfort for the air; it being asserted that 70°, with 80 per cent., or more, of humidity, is close and enervating, while 70°, with 60 per cent., or less, of humidity, is fresh and cool, and demands heavy clothing to prescrve the comfort of the individual-a proper and necessary demand in winter.

[^0]I＇ABLE．
Volemb and Weghts of air ani V＇apor of Humbity－Temperaturfs uf satcra－ tion and Dew Point－fleat to be Eapenibi，in Warming or Coohing Air or hapor to the Thapmature of 70° Fahrenieit and Coxdi－ tion of 70 per cent．IUmidity．

1.	11.	III．	IV．	V.	VI．	VII．	VIII．	IX．	X．	XI．	XII．	XIII．	X I	XV．
			Foree of Vapor in inches of Mercury Column．					\％을 들키칯 50＝示合品侖云㗊运为禺 릉 는흘 －ت゙ゴ 300 300 5						
0	11－577	86．38	$0 \cdot 045$	0.081	0.057	86．35	86．29	$0 \cdot 043$	$0 \cdot 11$			$0 \cdot 749$	1－228	0．79\％
5	$11 \cdot 704$	$85 \cdot 44$	$0 \cdot 054$	$0 \cdot 095$	$0 \cdot 067$	$85 \cdot 40$	85． 33	$0 \cdot 058$	$0 \cdot 13$			0.739	$1 \cdot 1+1$	10.787
10	11－830	84.53	$0 \cdot 067$	$0 \cdot 118$	0.052	S．1．48	$84 \cdot 40$	0.072	$0 \cdot 16$	$1 \cdot 1$	8．8	0．72．5	$1 \cdot 054$	0．772
15	$11 \cdot 957$	83．64	$0 \cdot 185$	$0 \cdot 148$	$0 \cdot 104$	83．58	83.17	$0 \cdot 092$	$0 \cdot 20$	$7 \cdot 3$	$13 \cdot 9$	0.70 .5	0.966	$0 \cdot 7.51$
20.	$12 \cdot 0.53$	\＄2．76	$0 \cdot 108$	0－186	$0 \cdot 130$	\＄2．68	S2．55	$0 \cdot 116$	$0 \cdot 25$	$12 \cdot 4$	$18 \cdot 9$	0．6S1	$0 \cdot 879$	（1） 72.5
25	$12 \cdot 210$	$81 \cdot 90$	$0 \cdot 136$	$0 \cdot 232$	$0 \cdot 162$	81－S0	81．64	$0 \cdot 146$	$0 \cdot 32$	17.2	23.5	$0 \cdot 651$	0.792	0.693
30	$12 \cdot 336$	81．06	0．169	$0 \cdot 285$	$0 \cdot 199$	$80 \cdot 94$	80．74	0．182	$0 \cdot 40$	$21 \cdot 8$	$27 \cdot 7$	$0 \cdot 615$	$0 \cdot 704$	$0 \cdot 05.5$
32	$12 \cdot 357$	80.73	0－183	$0 \cdot 308$	$0 \cdot 216$	$810 \cdot 60$	80．38	$0 \cdot 198$	$0 \cdot 43$	$23 \cdot 6$	$25 \cdot 8$	10.599	$0 \cdot 670$	$0 \cdot 638$
35	$12 \cdot 463$	$80 \cdot 24$	$0 \cdot 207$	$0 \cdot 345$	$0 \cdot 242$	$80 \cdot 10$	79.85	$0 \cdot 223$	$0 \cdot 49$	26.5	25.	0.574	0.617	$0 \cdot 611$
40	12－590	$79 \cdot 43$	0.251	0415	$0 \cdot 290$	79.26	78．96	0.271	$0 \cdot 59$	$30 \cdot 8$	$30 \cdot 1$	$0 \cdot 526$	0－329	0．560
45	$12 \cdot 716$	78．64	0．302	$0 \cdot 494$	$0 \cdot 346$	$78 \cdot 43$	78．08	$0 \cdot 326$	$0 \cdot 71$	35．5	34.6	$0 \cdot 171$	$0 \cdot 482$	$0 \cdot 501$
50	$12 \cdot 843$	$77 \cdot 57$	0．362	0.587	$0 \cdot 411$	$77 \cdot 62$	75－21	$0 \cdot 392$	0.85	$40 \cdot 3$	45°	$0 \cdot 405$	0.353	$0 \cdot 432$
55	$12 \cdot 969$	77－11	$0 \cdot 133$	$0 \cdot 695$	$0 \cdot 457$	76.82	$76 \cdot 33$	$0 \cdot 470$	$1 \cdot 01$	$45 \cdot 1$	49°	$0 \cdot 328$	0．266	11348
60	13.096	$76 \cdot 36$	$0 \cdot 517$	0.821	0.575	76.02	$75 \cdot 44$	0.561	$1 \cdot 21$	$50 \cdot 0$	54°	$0 \cdot 236$	0.178	0.251
65	$13 \cdot 222$	75．63	$0 \cdot 616$	0.968	$0 \cdot 678$	$75 \cdot 22$	74．54	$0 \cdot 669$	$1 \cdot 41$	54.9	38.5	$0 \cdot 127$	$0 \cdot 085$	$0 \cdot 136$
70	$13 \cdot 349$	74.91	$0 \cdot 732$	1－138	$0 \cdot 797$	$74 \cdot 43$	73．63	$0 \cdot 797$	1•61	59.8	63.	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
75	$13 \cdot 476$	$7+21$	0.867	1－336	$0 \cdot 9.35$	78.65	72．71	0.946	$2 \cdot 03$	8.4 .7	68.	$0 \cdot 149$	0.090	$0 \cdot 159$
80	$13 \cdot 602$	73.52	$1 \cdot 023$	1－562	$1 \cdot 094$	$72 \cdot 56$	$71 \cdot 77$	$1 \cdot 121$	$2 \cdot 39$	69.5	72．5	$0 \cdot 324$	0．181	0：345
85	13•729	72．S．4	$1 \cdot 203$	1－922	$1 \cdot 275$	$72 \cdot 07$	70．80	$1 \cdot 326$	$2 \cdot 82$	74.2	77．5	$0 \cdot 529$	$0 \cdot 272$	（1．36：3
90	$13 \cdot 855$	$72 \cdot 17$	$1 \cdot 410$	2－11ヶ	$1 \cdot 482$	71.28	$69 \cdot 50$	$1 \cdot 563$	$3 \cdot 30$	$78 \cdot 9$	82.5	$0 \cdot 766$	$0 \cdot 36.5$	$0 \cdot 816$
95	13.982	71．52	$1 \cdot 647$	2•152	1.716	$70 \cdot 49$	68．77	$1 \cdot 837$	$3 \cdot 85$	S3＇\％	$87 \cdot 5$	$1 \cdot 040$	1） 460	$1 \cdot 108$
100	14．108	$70 \cdot 88$	$1 \cdot 918$	$2 \cdot 928$	$1 \cdot 980$	$68 \cdot 69$	$67 \cdot 71$	$2 \cdot 152$	$4 \cdot 49$	S8． 4	$92 \cdot 5$	$1 \cdot 355$	$0 \cdot 556$	$1 \cdot 4 \cdot 13$

The figures relating to weights in the foregoing table，refer to 1000 cubic feet（a cube of 10 feet side）for a unit，to avoid the repetition of 0 ＇s in decimals；by multiplying any value by 7 ，the weights per cubic foot in grains will be found．All the weights are in pounds avoir－ dupois and decimals．The volumes are in cubic feet．

Columns II and III are derived from Regnault's data ; weight of one cubic foot of dry air $=0.080728$ pound $=12.387$ cubic feet per pound; and rate of expansion $=0.002039$ volume for each degree Fahrenheit from $32^{\circ}=0.025315$ cubic foot per pound from 32°.

Column IV is taken from Guyot's tables, Regnault's data, slightly corrected by differences.

Column V is derived from $W=\frac{0.622}{29 \cdot 922} \times$ value of Column III X value of Column IV, where $0.622=$ specific gravity of vapor in air of the same tension; and $29 \cdot 922=$ inches of mercury column which measures the tension of air in Column II.

Column VI is obtained directly from Column V, as indicated in caption.

Column VII is obtained by taking the difference of weight of the volume of vapor in the air, from that of the air which it displaces, and deducting their difference from the respective values in Column III. The values in Column VII agree as closely as could be expected with results in Glaisher's tables.

Column VIII is obtained by deducting weight of vapor, Column V from Column VII.

Column IX is obtained by taking the ratio of quantity of dry air in the several values of Column IX, with the value at $70^{\circ}(=73.63$ pounds) as a unit, and dividing by this ratio the values in Column VI.

Column X is obtained by taking 70 per cent. of $\frac{F}{29 \cdot 92 \%}$, where F is the tension of vapor possible to exist at the given temperature, as given in Column IV, and 29.922 is the tension of the atmosphere. It should be noticed that this column has its units in percentages: the first value, for instance, is $\frac{11}{100}$ of a per cent.

Column XI is obtained by making a computation of three columns for saturated air, like VII, VIII and $1 \times$, and thus ascertaining at what degree of temperature the values in Column IX coincide with those in the same column for saturated air. This column closely agrees with Glaisher's, varying two degrees higher at 15° and corresponding at 80°.

Column XII is taken from Gliaisher's tables at 70 per cent., and is sufficiently exact for use.

Column XIII is obtained by taking the difference between the quantity of vapor in air of 70° Fahrenheit, and that in the several values given in Column IX.

Column XIV is obtained by multiplying 0.07363 pounds (the quantity of dry air in a cubic foot of air of 70° Fahrenheit and 70 per cent. humidity) by 0.238 (the specific heat of air), adding to this value, that of the amount of the several values in Column IX, multiplied by 0.475 (the specific heat of vapor), and then multiplying the sums of the above by the number of degrecs from 70° which the air is to be heated or cooled.

Column XV is obtained by multiplying the values of Column IX (the vapor to be supplied or removed) by $1065^{\circ}=$ the latent heat of steam from and at 70°, and dividing the result by 1000 , so as to give the heat of vaporization belonging to one cubic foot of air at 70°.

A careful study of the table, with comparisons of the values given in the several columns, will readily allow any student to find the fullest corroboration of the views expressed in the original paper; but for the convenience of the general reader, it may be well to exlibit some of the results. Thus, calling attention to Column XI, it will be seen that the air of saturation at 60° becomes, by heating, that of 70° and 70 per cent. humidity; showing a elose approach of English and American humid conditions to the comfortable condition in cither case. Again, the temperature of saturation for air of 80°, with 70 per cent. humidity, is $69 \cdot 5^{\circ}$; consequently, air of above 80° of the usual humid condition of our climate in summer, will become a mist and rain, unless its moisture be absorbed by some non-heat-giving absorbent. If such air is to be reduced to the 70° standard of comfort, by means of surfaces cooled by currents of water, such surfaces must have a temperature at least below 60°, and probably 10° below that point, to abstract, by condensation, the moisture from the air. The heat demanded for condensation, therefore, will be increased some 20° below that of cooling the air, but as the latent heat of vapor of water is nearly constant, the difference of quantity of heat for cooling is not materially ehanged.

A study of the last two columns will demonstrate that as the quantity of moisture present in air falls off inuch more rapidly than the temperature, the quantity which is requisite to make up the moisture in air at 70° and 70 per cent. humidity, from the condition at the various temperatures with the same ratio of humidity, becomes more and more nearly the same as the temperatures fall off. The great heat demanded for changing water into vapor accordingly, is nearly constant for the low temperatures, and the heat demanded for warming
air gains on that for vaporization of water ; and after passing a greatest difference at between 55° and 60°, attanning an equality at about 36°, it becomes about one-half greater at 0°.

The tabular values here given have, it is thought, been first grouped together in this, or any form, and they will be found a ready and convenient basis for the application of the various meteorological conditions to warming and ventilation.

[^0]: 1. It the Neeting of the Institute at Boston, Oetober 18th, 1875.
